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Protocol for a randomized
placebo-controlled clinical trial
using pure palmitoleic acid to
ameliorate insulin resistance and
lipogenesis in overweight and
obese subjects with prediabetes
Ecesu Cetin1†, Brian Pedersen1†, Lindsey M. Porter1,
Gail K. Adler1 and Mehmet Furkan Burak1,2*

1Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard
Medical School, Boston, MA, United States, 2Sabri Ulker Center, Department of Molecular Metabolism,
Harvard T.H. Chan School of Public Health, Boston, MA, United States
Palmitoleic acid (POA), a nonessential, monounsaturated omega-7 fatty acid

(C16:1n7), is a lipid hormone secreted from adipose tissue and has beneficial

effects on distant organs, such as the liver and muscle. Interestingly, POA

decreases lipogenesis in toxic storage sites such as the liver and muscle, and

paradoxically increases lipogenesis in safe storage sites, such as adipose tissue.

Furthermore, higher POA levels in humans are correlated with better insulin

sensitivity, an improved lipid profile, and a lower incidence of type-2 diabetes and

cardiovascular pathologies, such as myocardial infarction. In preclinical animal

models, POA improves glucose intolerance, dyslipidemia, and steatosis of the

muscle and liver, while improving insulin sensitivity and secretion. This double-

blind placebo-controlled clinical trial tests the hypothesis that POA increases

insulin sensitivity and decreases hepatic lipogenesis in overweight and obese

adult subjects with pre-diabetes. Important to note, that this is the first study ever

to use pure (>90%) POAwith < 0.3% palmitic acid (PA), whichmasks the beneficial

effects of POA. The possible positive findings may offer a therapeutic and/or

preventative pathway against diabetes and related immunometabolic diseases.
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1 Introduction

Obesity primarily manifests as a package of immunometabolism

diseases that includes insulin resistance, diabetes, fatty liver disease, and

atherosclerosis. All these diseases share similar adipo-centric lipid

derangements and immunometabolic underpinnings. High

carbohydrate and high (poor quality) fat diets contribute to the

pathogenesis of obesity and its related complications. Adipose tissue

is one of the most important endocrine organs in these processes.

Adipose tissue is a safe and efficient energy storage site that shows

extreme plasticity when handling excessive caloric intake. However,

after a certain threshold, it gets inflamed and contributes to obesity-

related disease states (1, 2). During the initial stages of energy surplus, it

stores extra calories via increasing de novo lipogenesis inside the

adipose tissue. Lately, our lab discovered that it is simultaneously

secreting some lipokines as signalingmolecules to crosstalk with distant

organs such as the liver and the muscle. Lipokine signaling decreases de

novo lipogenesis in the liver, improves insulin sensitivity and increases

glucose uptake in the muscle (3). Expectedly, a persistent calorie excess

with overfeeding during obesity trumps this signaling rescue

mechanism and leads to ectopic fat accumulation.

Palmitoleic acid (POA) is one of the crucial components of this

rescue mechanism. Acting as a lipokine, POA is secreted from

adipose tissue and has beneficial pleiotropic effects in distant organs

(3, 4) (Figure 1). POA is a nonessential, monounsaturated omega-7

fatty acid with 16 carbons (C16:1n-7). POA can be obtained from
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dietary sources such as macadamia nuts, dairy, sea buckthorn oil,

and certain fish. It can also be synthesized via the desaturation of

palmitic acid (PA, C16: 0) primarily in adipose tissue and liver by a

delta-9 desaturase called stearoyl-CoA desaturase-1 (SCD1). Like

other fatty acids, POA contributes to complex lipids, including

triglycerides, phospholipids, and cholesterol esters, and circulates as

a free (non-esterified) fatty acid. The actions of POA tend to oppose

those of palmitic acid (PA), which is known to induce ER stress,

inflammation, apoptosis of healthy cells, insulin resistance, glucose

intolerance, and steatosis in the liver and muscle (3–20). The

beneficial effects of POA have been observed in obesity-related

immunometabolic diseases, including insulin resistance, diabetes,

fatty liver disease, and atherosclerosis. In cellular and animal

studies, POA supplementation has been shown to improve overall

glucose metabolism and increase whole-body insulin sensitivity (10,

11, 21–28) via increased muscle and adipose tissue glucose uptake

by enhancing GLUT content and AMPK activation (5, 29, 30). This

prevented weight gain (11, 22, 31, 32) improved beta-cell function,

and prevented palmitic acid-induced beta-cell death (6, 8).

Additionally, POA attenuated inflammation (16, 17, 33–40) by

decreasing circulating pro-inflammatory cytokines and

inflammatory markers in various tissues. Furthermore, it

prevented atherosclerosis by decreasing inflammasome activation

and organelle stress (9). Consistent with these data, POA improved

the circulating lipid profile and ameliorated fatty liver disease by

increasing lipogenesis in safe storage sites (adipose tissue) and
FIGURE 1

Summary of potential mechanism of actions of palmitoleic acid (POA). POA is synthesized both in adipose tissue and liver by desaturase enzyme
SCD-1. However, it is likely that POA synthesized in subcutaneous adipose tissue (lipokine) is healthier signal and has beneficial pleiotropic effects.
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decreasing lipogenesis in pathological or toxic lipid storage sites

(muscle and liver) (3, 41–43).

Fat storage in the liver contributes to insulin resistance, leading to

fatty liver disease (NAFLD), and may progress to steatohepatitis

(NASH) and finally cirrhosis. Consistent with animal studies, human

studies have shown that higher POA is correlated with lower insulin

resistance, diabetes incidence, dyslipidemia, hypertension,

atherosclerosis, and myocardial infarction (36, 44–60). The positive

association studies were followed by an extensive meta-analysis of 16

multicentric prospective cohort studies. The meta-analysis showed

that higher levels of POA were associated with a lower risk of

developing type 2 diabetes (61). Many interventional human

studies are focused on dyslipidemia, and they showed that POA

supplementation (mainly throughmacadamia nut oil) reduced serum

LDL cholesterol and triglycerides and increased HDL cholesterol

(47–51). However, some of the interventional studies failed to show

significant beneficial effects (62, 63). This is most likely because these

studies administered POA supplements that contained a significant

amount of palmitic acid, which canmask the beneficial effects of POA

and has numerous detrimental effects on its own. Consequently, there

is a necessity to address this knowledge gap in the literature and test

pure exogenous POA administration on insulin sensitivity and serum

lipid profiles. This randomized, placebo-controlled study will address

this paucity of knowledge regarding pure POA’s effects. The primary

aim of this study is to determine the beneficial effect of POA

supplementation on insulin sensitivity, measured by the gold

standard test: the hyperinsulinemic-euglycemic clamp, in

overweight and obese subjects with prediabetes. Secondary aims

address the amelioration of hepatosteatosis, whole-body fat mass,

serum lipids and inflammatory markers.
2 Methods and analysis

2.1 Study design and setting

This is a prospective, single-center, 8-week, double-blind,

randomized, placebo-controlled clinical trial (NCT05560971)

enrolling 40 individuals with a prediabetes and BMI of 25-40 kg/

m2. Study participants will be recruited at Brigham and Women’s

Hospital in Boston, Massachusetts, USA with the inclusion and

exclusion criteria provided in Table 1. Figure 2 shows a description

of the enrollment and evaluation procedures. The protocol of this

study was approved by the Institutional Review Board of Mass

General Brigham. This investigator-initiated study is funded by

Tersus Life Sciences, LLC, protocol no: 2022P001764.
2.2 Subject enrollment

Participants will be recruited from the greater Boston area

(using local news media, MBTA advertising, flyers, poster

advertisements, brochure mailings, and online resources),

Brigham and Women’s Hospital (using flyers), and the Mass

General Brigham Health Care System (using Rally and Patient

Gateway programs). Patient Gateway Research Invitations allow for
Frontiers in Endocrinology 03
direct communication with any eligible subjects who have not opted

out of receiving Research Invitations. Additionally, potentially

eligible participants who previously consented to be contacted

about future research studies will be contacted (via email or phone).

Potential participants will undergo a 2-hour in-person

screening visit to determine if they meet study eligibility

requirements. Screening visit laboratory measurements are

specified in Table 2. Written informed consent will be obtained

during the screening visit by a licensed study physician. The

screening visit will include a complete medical history and

physical examination, laboratory studies (complete blood count,

comprehensive metabolic panel, urine analysis, insulin, TSH, and a
TABLE 1 Eligibility criteria.

Inclusion Criteria

Age 18 to 70 years with BMI 25-40 kg/m2

Overweight and obese individuals with insulin
resistance, prediabetes and/or impaired glucose
tolerance
HbA1c between 5.6-6.5,
Impaired fasting plasma glucose (>99, ≤126 mg/
dL), or
HOMA-IR value above 2.5.

BP <150/90 with or without medication,
GFR>60,
ALT, AST <300,
TSH within normal ranges with or
without medication

Exclusion Criteria

Pregnancy or breastfeeding

Use of any medications
(except thyroid hormone with normal TSH, anti-
hypertensives with blood pressure <150/90, and
rescue inhalers for asthma)

Use of OTC supplements (except vitamin D),
avoiding supplements containing lipid
supplements (e.g., fish oil macadamia oil, cod
liver oil, krill oil, flaxseed, sea buckthorn oil)
within 3 months of study participation
is ensured

Greater than 3 servings/day combined of cheese,
milk, kefir, or yogurt for the last 3 months before
the study

Diagnosed with any type of diabetes mellitus
and/or taking glucose-lowering medications

Recent weight loss (more than 7% of TBW in
last 3 months)

Established major chronic diseases such as major
cardiovascular disease (history of myocardial
infarction, stroke, heart failure, coronary artery
bypass graft, arrhythmia, peripheral arterial
disease), bleeding disorder or anticoagulation
use, active cancer, end-stage renal disease,
proteinuria (>3g/day), dementia, severe chronic
obstructive pulmonary disease (needs systemic
steroid therapy), significant liver disease
(ALT-AST>300)

History of ongoing smoking cigarettes >1 pack/
day, alcohol abuse, or drug abuse

Treatment with any investigational drug in the
one month preceding the study
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pregnancy test), and an electrocardiogram (EKG). Randomization

to either POA supplement or placebo will be stratified based on

BMI and biological sex and it will be done by the BWH

Investigational Drug Pharmacy Service. The investigational agent

(POA supplement) and placebo will be dispensed in a similar shape,

size, color, and odor. For both POA and placebo, participants will be

instructed to take 4 capsules daily: 2 capsules in the morning and 2

capsules in the evening before meals at consistent times each day.

To facilitate timely medication intake, we send morning and

evening reminder text messages to participants every day. Each

420 mg capsule of POA is 90% pure POA. Therefore, each capsule

will contain 378 mg of POA, and the total amount of pure POA

consumed per day in the treatment arm will be 1512 mg.
Frontiers in Endocrinology 04
2.3 Palmitoleic acid-free diet

Two weeks before Inpatient Visit 1 (Week 0), enrolled

participants will be asked about their dietary habits and exercise

routine. Afterwards, they will be instructed not to change their

dietary and exercise habits intentionally except for eliminating

foods known to contain large amounts of POA from their diet

until after the entire study is complete. These foods are sardines,

menhaden, anchovies, pollock, herring, macadamia nuts, sea

buckthorn oil, krill oil, cod liver oil, and macadamia nut oil. Also,

they will be limiting their dairy intake to no more than 1 total dairy

serving a day. Our goal is to eliminate any residual effect of POA

present in participants’ regular diets and to improve the detection of

the acute effects of POA. With the exception of having participants

avoid POA rich foods, we aim to achieve a real-life experience with

no dietary or exercise coaching. Additionally, participants will be

abstinent from activities that alter insulin sensitivity the day before

the inpatient visits such as drinking any alcohol, consuming

caffeine, and performing strenuous exercise.
2.4 Inpatient visits (Week 0 and Week 8)

Participants who qualify and decide to join the study will

undergo two overnight study visits at week 0 and week 8 at

Brigham and Women’s Hospital. After completing study

procedures at week 0, participants will be given the study

medication, either placebo or POA, and will be instructed to take
FIGURE 2

Schedule of the study procedures.
TABLE 2 Screening visit tests.

Screening Visit Tests

Blood Tests Urine Tests

Complete Blood Count with differentials Urinalysis, complete

Comprehensive Metabolic Panel Urine Pregnancy Test

Hemoglobin A1c EKG

TSH

DNA Analysis

Insulin
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2 capsules twice a day. Laboratory measurements are shown

in Table 3.

2.4.1 Modified mixed meal tolerance test:
standardized evening mixed meal response

A mixed meal tolerance test is commonly used in clinical

research for the evaluation of insulin secretion, sensitivity and

beta cell function by measurements of fasting and postprandial

glucose and C-peptide levels after test meal consumption (64).

In our study, after at least a 6-hour food withdrawal, one

intravenous line will be placed in the hand/wrist of the

participant and used to facilitate frequent blood drawing

throughout the study. Participants will ingest a standardized test

meal (360 kcal, ∼44% carbohydrate, 35% fat, and 21% protein)

composed of an 8-fluid-ounce nutrition supplement drink

(BOOST®). Blood samples will be collected before the meal

ingestion and at 30-minute intervals after the meal for 2 hours

for glucose and C-peptide measurements.

2.4.2 Hyperinsulinemic-euglycemic clamp
The hyperinsulinemic-euglycemic clamp is the gold standard

method for the determination of insulin sensitivity (65). The

principle is an acute elevation of insulin concentration and

maintenance at the basal level which would normally cause

hypoglycemia. Blood glucose is kept at basal concentrations with

variable glucose infusion through negative feedback. This prevents

glucose-insulin feedback loop and hypoglycemic neuroendocrine

response which interferes with the determination of whole-body

insulin sensitivity. Under these steady-state concentrations, hepatic

glucose production is suppressed, and the rate of glucose infusion is

equivalent to whole-body glucose uptake. Insulin sensitivity is

denoted as M/I where M reflects the rate of glucose disposal

measured by glucose infusion and I stands for insulin

concentration (66).
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In our study, one intravenous line will be placed in an arm and

used to facilitate frequent blood drawing throughout the day after an

overnight fast. This line will again be placed in a “Hot Box” (a heated

box set at 150F). The second intravenous line, which will be inserted

into the antecubital vein, will be used for infusions of dextrose and

insulin. They will receive a low-dose primed continuous infusion of

insulin (20 mIU/m2/min) for two hours from ~ 8:00 AM to ~10:00

AM, followed by a high-dose primed insulin infusion (120 mIU/m2/

min) from ~10:00 AM to ~12:00 PM. Dextrose (20%) will be infused to

maintain blood sugar at∼90 mg/dL throughout the infusion of insulin.

A priming insulin dose will be given at the time of each insulin infusion

change. Insulin infusion rates were chosen to partially suppress hepatic

glucose production during the low-dose infusion, while completely

suppressing hepatic glucose production and maximally stimulating

peripheral glucose utilization during the high-dose infusion in insulin-

resistant participants. Plasma glucose levels will be measured every 5

minutes with a bedside glucose analyzer (YSI). Our goal is for each

participant to experience four hours of blood glucose levels at 90 mg/

dL. In addition, finger-sticks may be performed to assess the

participant’s glucose levels using a standard bedside glucometer (only

in-case of unexpected YSI or IV line problems). Clamp Blood Sets are

displayed in Table 4. During this procedure, the participant will be

asked how they feel at regular intervals using a standardized

questionnaire. We will also measure the participant’s blood pressure

and heart rate before beginning the clamp.

2.4.3 Potassium supplementation
The day before the hyperinsulinemic clamp, participants will

have their plasma potassium level checked upon admission to the

Inpatient Research Unit. If potassium levels are less than 4.0 mmol/
TABLE 4 Clamp blood sets.

Clamp Blood Sets

T=0, Blood Set 1
T=115, Blood
Set 2

Cortisol, Comprehensive Metabolic Panel, Insulin,
C-Peptide, hsCRP, Lipid Panel, Direct LDL

Cortisol, Insulin

Complete Blood Count with differentials EDTA Extra Plasma

Hemoglobin A1c
Low Dose
Insulin Infusate

Fatty Acid Panel, Essential
T=240, Blood
Set 3

TNFa, IL-6, Total Adiponectin, Leptin Cortisol, Insulin

RNA from PBMC EDTA Extra Plasma

FABP4, Melatonin, NEFA, Glucagon
High Dose
Insulin Infusate

Glycerol

EDTA Extra Plasma

Extra Serum

Q 5 min Glucose monitoring begins
TABLE 3 Admission tests.

Week 0 and Week 8 Assessments

Admission Labs Day 0
Overnight Fasting Labs with
Clamp Blood Sets

Urine HCG (Women) Complete Blood Count with differentials

Potassium Comprehensive Metabolic Panel

Hematocrit
Hemoglobin A1c, Insulin, C-Peptide,
Glucagon, Cortisol, Melatonin

MMTT Day 0 (7 Hours
Food Withdrawal) hs-CRP, TNFa, IL-6

MMTT 0 Min-Glucose/C peptide Total Adiponectin, Leptin

MMTT 30 Min-Glucose/C peptide FABP4, NEFA, Glycerol

MMTT 60 Min-Glucose/C peptide EDTA Extra Plasma, Extra Serum

MMTT 90 Min-Glucose/C peptide RNA from PBMC

MMTT 120 Min-Glucose/C peptide
Lipid Panel, Essential Fatty Acid Panel,
Direct LDL
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L, the participant will be given potassium orally. The dose of

potassium will vary depending on the amount of potassium

needed to increase plasma potassium to ≥ 4.0 mmol/L.

2.4.4 Magnetic resonance imaging
Nonalcoholic fatty liver disease is characterized by the presence of

steatosis, which is considered the histopathologic hallmark of this

condition. The aberrant accumulation of iron is frequently observed in

individuals diagnosed with diffuse hepatopathies and metabolic

disorders. Non-invasive imaging methods, not limited by sampling

error, observer variability, and decreased patient acceptance, are of

increasing importance in the diagnosis and monitoring of liver disease

(35). MRI is widely accepted as the best technique for quantification of

liver fat. MRI for proton density fat fraction (MRI-PDFF) liver is a

commonly used reference standard that only requires one breath hold

for fat quantification and whole-organ imaging (36). MRI-PDFF is

best suited for when the drug or intervention has a high likelihood of

an anti-steatotic effect. Study participants will complete an abdominal

MRI scan without contrast. More specifically, the procedure is a liver

iron quantification MRI for proton density fat fraction. It will occur at

the standard Radiology Facility on the 1.5-Tesla Siemens Aera MRI

machine. The participant will lie flat in the scanner for approximately

40 minutes to complete the MRI.

2.4.5 Dual energy X-Ray absorptiometry
DEXA, the gold standard method for body composition on a

molecular level, provides an evaluation of fat mass, non-bone lean

mass, and bone mineral content. Body composition will be

measured by DEXA at week 0 (baseline) and week 8. This is an

accurate, validated method with minimal radiation exposure. A

Discovery-W DEXA (Apex software version 4.0, Hologic, Bedford,

MA), a clinical and research scanner located in the BWH outpatient

facility, will be used to measure total body fat percentage and

detailed analysis of fat mass locations and volumes. Despite a low

dose radiation exposure, pregnant participants will not be allowed

to participate in the study (67–70).

2.4.6 Sleep monitoring
Since sleeping time and the sleep-wake cycle effects insulin

sensitivity measures, subjects will wear an Actiwatch Respironics®

wristwatch, which monitors their sleeping time and quality for their

overnight visit (71). We will examine their sleep quality and

schedule. If we find atypical sleep patterns, we will also use

sleeping quality/time as a co-variate for the final analysis.
2.5 Week 4 visit

After four weeks on the study medication, participants will

come to the Center for Clinical Investigation (CCI) for a blood

draw. Participants will be asked to fast after midnight before the

morning blood draw. Laboratory measurements are specified

in Table 5.
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2.6 Statistical analysis

2.6.1 Statistical methods
We will use a paired t-test for the primary endpoint as we

measure insulin sensitivity M and M/I values from the same

individuals before and after taking POA vs placebo. However,

given the relatively small sample size of the study, which raises

the possibility of results not being normally distributed, we will also

use Wilcoxon non-parametric test to compare two paired groups

(before and after, POA vs placebo). The focus of these analysis will

be insulin sensitivity; however, we will use multivariate regression

analysis, which also provides the flexibility of controlling for and

evaluating covariates such as age, sex, sleep, and BMI. We will apply

the same testing to all endpoints. According to some association

studies, we expect to see a higher magnitude of the POA effect in

women. We will aim for study enrollment to be at least 50% women

to be able to detect sex differences in the POA effect.

2.6.2 Sample size and power
The study is powered only for the primary endpoint, insulin

sensitivity. We expect a mean insulin sensitivity-M value (measured

as steady state clamp glucose infusion rate) of approximately 7.5 ±

1.7 mg/kg/min with placebo, based on previous clamp studies30.

Based on previous human studies, we expect to see at least a 20%

difference between placebo vs. POA treatments. A sample size of 40

subjects with complete data will provide greater than 80% power for

these assumptions. We will perform stratified randomization based

on subjects’ BMI (<30>), and gender for homogenous treatment

groups. 3:2 POA vs placebo assignment will allow us to achieve this

randomization goal. We were also implementing oral glucose

tolerance test results for the additional stratification of the

randomization, however additional invasive testing before starting

the trial period caused scheduling conflicts and compliance

problems. Hence, we have discontinued OGTT for the

stratification criteria.
TABLE 5 Week 4 tests.

Blood Draw (Week 4) Study Tests

Complete Blood Count with differentials FABP4, NEFA, Glycerol

Comprehensive Metabolic Panel EDTA Plasma

Hemoglobin A1c, Insulin, C-
Peptide, Glucagon

RNA from PBMC

hs-CRP, TNFa, IL-6 Lipid Panel, Standard

Triglycerides
Total Cholesterol
HDL Cholesterol
LDL Cholesterol (Direct)
Cholesterol/HDL Ratio
(Calculated),
Non-HDL
Cholesterol (Calculated)

Total Adiponectin, Leptin
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2.6.3 Data management plan
The study will utilize REDCap (Research Electronic Data

Capture), a free, web-based application designed to support data

capture for research studies. The database will be hosted on secure,

password-protected servers. The database is fully HIPAA compliant

and provides audit capabilities. All study data will be inputted into

REDCap by study staff and the platform provides automated export

procedures for seamless data downloads to Excel and common

statistical packages.
3 Anticipated results

3.1 Expected outcome

The primary endpoint of this study is insulin sensitivity

which will be evaluated by the hyperinsulinemic euglycemic

clamp and estimated by the HOMA-IR. The secondary

endpoints demonstrated in Table 6 are glucose and c-peptide

measurements performed after the modified mixed meal

tolerance test, liver fat quantification, total body fat mass and

body composition evaluated by DEXA scan, serum levels of

fasting glucose, insulin, c-peptide, liver function tests, fasting

lipid panel, hsCRP, circulating inflammatory cytokines (TNF-a,

IL1-B, IL-6), FABP4, glucagon, POA, free fatty acids, glycerol,

adiponectin, and leptin. We expect POA compared to placebo to

improve insulin sensitivity, glucose tolerance, hepatosteatosis,

whole-body fat mass, serum profile of lipids, and inflammatory

markers. Additionally, we anticipate a higher therapeutic impact

of POA in women compared to men.
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3.2 Benefits

Successful completion of the study will lead to a better

understanding of the effects of POA on glucose and lipid

metabolism. Understanding the effects of POA on insulin

sensitivity and lipogenesis has the potential for a profound public

health impact in the fight against obesity and type 2 diabetes.

Possible positive results of this study might create a new dietary

approach to prevent and/or treat diabetes and related complications

such as fatty liver disease. High-quality unsaturated fatty acids (such

as omega-3) have been shown to improve dyslipidemia and

improved the lives of people with cardiovascular disease (72).

Testing the effect of omega-7 fatty acids like POA will increase

the understanding of how high-quality fatty acids could be

beneficial for insulin resistance and prediabetes in addition to

dyslipidemia. There will be no direct benefit to the subject for

taking part in this study.
3.3 Pitfalls and alternative approaches

This is an 8-week clinical trial, and the duration might not be

sufficient to observe the beneficial effects of POA on insulin

sensitivity. Because other studies demonstrate the effects of POA

on metabolism after 1 month, we decided to limit the study

timeframe to 8 weeks to make sure patient compliance is

established (27, 47). The study is powered for the insulin

sensitivity measured with the gold standard method of the

hyperinsulinemic-euglycemic clamp. Therefore, 40 participants

may not be adequate to exhibit statistically significant differences

in secondary endpoints being liver fat mass, total body fat mass,

body fat composition, glucose and c-peptide levels post-mixed meal,

serum glucose, insulin, c-peptide, liver function tests, fasting lipid

panel, hs-CRP, circulating inflammatory cytokines (TNF-a, IL1-B,

IL-6), FABP4, glucagon, POA, free fatty acids, glycerol, adiponectin,

leptin measurements. Additional studies designed to focus on

secondary endpoints might be necessary to show significant

effects. We aim to select participants who has insulin resistance

via using criteria identifies individuals with overweight-obesity and

prediabetes. However, we might still get participants with high

insulin sensitivity, where there might not be enough therapeutic

window to improve. In that case, we might need to add more strict

inclusion and/or exclusion criteria or randomize potential insulin

sensitive participants equally to treatment arms.
4 Discussion

Following the accumulation of evidence from animal studies,

several positive association studies have demonstrated the

correlation of POA with decreased insulin resistance and diabetes

incidence. A study with 100 Caucasian non-diabetic, overweight

volunteers with first-degree type 2 diabetic relatives undergoing 9

months of lifestyle intervention demonstrates that circulating POA

is a strong and independent determinant of insulin sensitivity
TABLE 6 Outcomes.

Primary Endpoint

Insulin sensitivity, evaluated
by hyperinsulinemic
euglycemic clamp (gold
standard test), and
estimated by the HOMA-IR

Secondary Endpoints

Liver fat quantification
(evaluated by liver
MRI-PDFF)

Modified mixed meal
tolerance test (standardized
evening mixed
meal response)

Total body fat mass and
body composition (will be
evaluated by DEXA scan)

Serum; fasting glucose,
insulin, C-peptide, LFTs,
fasting lipid panel, hsCRP,
circulating inflammatory
cytokines (TNFa, IL1-B,
IL6), FABP4, glucagon,
POA, free fatty acids,
glycerol, adiponectin, leptin,
and cortisol.
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measured by hyperinsulinemic-euglycemic clamp tests, implying its

critical role in the pathophysiology of insulin resistance in humans

(46). Another study performed with non-diabetic participants has

shown that plasma POA is an independent determinant of glucose

tolerance, insulin sensitivity, and beta cell function in non-diabetics.

This underscores POA’s key role in protecting systemic glucose

metabolism from the detrimental effects of excess NEFA and

adiposity (44). After the improvements in glucose metabolism in

preclinical models and association studies, an extensive longitudinal

study was performed. Data from 16 prospective studies with 63,682

participants without known diabetes at baseline and 15,180

participants who developed cases of type 2 diabetes over the

average of 9 years and over up to 20 years of follow-up were

analyzed. POA was measured as a biomarker of dairy fat

consumption. This large meta-analysis shows that higher POA

levels are associated with a lower risk of developing Type 2

diabetes mellitus (61). Yet, some association studies claimed a

positive correlation between obesity and POA and interpreted it

as a negative impact (73–85). Despite the claims of others, we think

that the increased levels of POA are due to its role as a rescue

mechanism of the body against gluco-lipotoxicity. In vitro

experiments done in human islet cells supports this idea by

demonstrating that POA ameliorates the detrimental effects of

palmitic acid by lowering high glucose-induced apoptosis of beta

cells (7). Several human interventional studies focusing on the

effects of a POA-enriched diet on dyslipidemia have been carried

out. For instance, 0.75 ml/day sea buckthorn seed oil (4.89% POA)

supplementation for 30 days prompted a 27% decrease in LDL

cholesterol in hypertensive individuals (86). Furthermore, the

administration of 15% of daily caloric intake with macadamia

nuts (high in POA) for 4 weeks resulted in a 5.3% decrease in

LDL cholesterol, a 3% reduction of total cholesterol, and a 7.9%

increase in HDL cholesterol levels in hypercholesterolemic men

(48). Additionally, a study comparing a Macadamia nut rich diet

(42.5-gram POA/day) with an Average American Diet showed an

8.9% decrease in LDL cholesterol and a 9.4% decrease in total

cholesterol (50). However, some of the studies failed to show

beneficial effects. Perhaps this is because these studies

administered POA supplements that contained a significant

amount of palmitic acid which can mask the beneficial effects of

POA. In summary, association studies could be misleading both

positive and negative ways according to many confounders, which

is hard to control. Thus, there is a critical unmet need to assess the

causal effects of POA directly and blindly (un-biased) on human

glucose and lipid metabolism.

While designing translational studies, one of the most

important aspects is safety. Unsaturated fat, namely POA, has

beneficial effects on glucose metabolism, whereas the same

amount of saturated fat, namely palmitic acid, is detrimental (22,

44). This concept has been proven by investigating the dietary

habits of Greenland Eskimos in the 1970s. Their diet consisted of

55% fat enriched with POA (3 times higher than a Western diet, an

average of 6.54 grams/day), which surprisingly resulted in

significant protection from diabetes, dyslipidemia, and coronary
Frontiers in Endocrinology 08
heart disease as compared to Eskimos living in Denmark, who were

consuming a Western diet (87, 88). POA is the second most

abundant monounsaturated fatty acid within the standard

American diet (89). The average Western diet consists of

approximately 2 grams of POA (90). Human intervention studies

have documented the consumption of up to 15.3 g of POA/day for

the duration of up to four weeks, with no serious adverse effects

reported (48). According to an expert panel, 5 g POA/d (as 10 g of

either Provinal® EE or TG) for the average user and 10 g POA/d (as

20 g of either Provinal® EE or TG) for a 90th percentile user is

Generally Recognized as Safe (GRAS) (91). 1512 mg of pure

palmitoleic acid will be given to the treatment arm in our study.

The available evidence suggests that consumption of POA within

the specified intake levels does not result in any significant

adverse effects.

To date, there are no clinical trials that have assessed the impact

of supplementation with pure POA versus placebo on glucose

tolerance and insulin resistance in humans. The proposed

randomized, placebo-controlled study will address this gap in

knowledge, and give us an opportunity to possibly translate our

basic science discovery to humans. Here we hypothesize that we can

mimic the rescue mechanism of adipose tissue against obesity by

supplementing high dose POA exogenously, which will improve

whole-body insulin sensitivity and ameliorate hepatosteatosis.
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